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Effect of mutual inductance coupling on superconducting

flux qubit decoherence
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In the Born-Markov approximation and two-level approximation, and using the Bloch-Redfield equation,
the decoherence property of superconducting quantum circuit with a flux qubit is investigated. The
influence on decoherence of the mutual inductance coupling between the circuit components is complicated.
The mutual inductance coupling between different loops will decrease the decoherence time. However, the
mutual inductance coupling of the same loop, in a certain interval, will increase the decoherence time.
Therefore, we can control the decoherence time by changing the mutual inductance parameters such as
the strength and direction of coupling.

OCIS codes: 270.0270, 000.6800.
doi: 10.3788/COL20090701.0078.

In the quest for practical systems for carrying out quan-
tum computations, solid-state systems that make use
of the Josephson effect are available candidates[1,2].
Presently, three prototypes of superconducting qubits
are studied experimentally[3−6]. The interaction be-
tween quantum system and environment will cause two
demolishment processes, i.e., quantum dissipation and
quantum decoherence[7,8]. The former will cause en-
ergy dissipation, and the latter will make the system
degenerate from coherent state to classical state[9,10].
Compared with other qubit candidates (such as trapped
ions, nuclear spins, and cavity quantum electrodynamics
(QED)), decoherence presents a much more formidable
challenge to superconducting qubits. For a true two-
level qubit, decoherence occurs due to the coupling of
the qubit to its environment. However, all of the pro-
posed superconducting qubits have multiple energy lev-
els which result in adverse effects on quantum gate op-
erations. In fact, coupling between the computational
bases, i.e., |0〉, |1〉 and states |n ≥ 2〉 of the noncomputa-
tional subspace results in significant errors for one-qubit
gate operations. Previous theoretical works on decoher-
ence of superconducting qubits have typically relied on
the widely used spin-boson model which postulates a
purely two-level dynamics, therefore neglecting leakage
effects[11]. As a basic model describing a quantum sys-
tem, the spin-boson model provides a simple and effective
way to study the quantum dissipation characteristics.
Based on this model, the evolution of the quantum sys-
tems is described as a two-level dynamics process. Com-
bining network graph theory with the Caldeira-Leggett
model for dissipative elements, Burkard, Koch, and Di-
Vincenzo (BKD) presented a multi-level quantum circuit
theory of decoherence for a general circuit realization of
a superconducting qubit[12,13]. The decoherence of “IBM
qubit” was studied using the circuit theory. A number of
decoherence mechanisms can be important, being both
intrinsic characteristic to the Josephson junctions, and
current and voltage from the external control circuits.

The effect of the current or voltage fluctuations are re-
lated to the mutual inductance between external circuits
and environment. In this letter, we study the effect of
the mutual inductance between IBM qubit and environ-
ment for decoherence.

The IBM qubit is described by the electrical circuit
shown in Fig. 1. We will investigate the decoherence
property of superconducting flux qubits coupling with
the environment. In the circuit, shunt resistors R, exter-
nal impedances Z(ω), and bias current sources IB form
the environment.

The constraint relation between the current flowing
through Josephson junction and voltage (flux) is

IJ = IC sinϕ, (1)

dϕ

dt
=

Φ0

2π
VJ(t), (2)

where, IJ is the super-current of Josephson junction,
IC is the critical current of the junction, ϕ is the pulse
difference across the junction, VJ is the voltage across

Fig. 1. Quantum circuit with flux qubit. Impedance Z

reflects the dissipative effect of environmental electromag-
netic fluctuation on qubit. The coefficient of the mutual in-
ductance between L1 and L2, L3 and L4 is M1, while that
between L3 and L2, L1 and L4 is M2. Ji (i = 1, 2, 3): Joseph-
son junctions.
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the junction, Φ0 ≡ h/2e is the flux quantum.
The Hamiltonian of the total system is

H(t) = HS + HB + HSB, (3)

where HS is the Hamiltonian of the system, HB is the
Hamiltonian of the reservoir, HSB is the interaction of
the quantum system and reservoir.

HS =
1

2
QT

CC−1QC +

(

Φ0

2π

)2

U(ϕ), (4)

C is the capacitance of the junction and U(ϕ) is the po-
tential energy of the system. From HS, the canonical
coordinate and canonical momentums of the system are
respectively

X =

(

Φ0

2π

)

ϕ,

QC =
Φ0

2π
Cϕ̇.

HB is given by

HB =
1

2

∑

α

(

1

mα

p2
α + mαω2

αx2
α

)

. (5)

HB is the Hamiltonian describing a bath of harmonic
oscillators position and momentum operators xα and
pα, mass mα, and oscillator frequency ωα. Adopting
coordinate-coordinate mode, HSB inherits the coupling
with a dissipative environment,

HSB = (g · ϕ)
∑

α

cαxα + (g · ϕ)2
∑

α

c2
α

2mαω2
α

. (6)

cα is the coupling coefficient, g is the normalization vec-
tor:

g =
1√
E





L2L3 + L2L4 + L3L4 + M1(2L2 + L3 − 3M2) + M2(L2 + L3 − 2L4 − 3M2)
L1L3 + 2M2

1 + (L1 + L3 + L4 + 2M2)M1 − M2
2 − (L1 − L3)M2

L1L2 − 2M2
1 − (L1 + L4 + 3M2)M1 − M2

2 − (L1 − L2)M2



 , (7)

where

E(M) = [L1(L3 + M1 − M2) + L3(M1 + M2) + L4M2 + 2M2
1 − M2

2 + 2M1M2]
2

+[L1(M1 + M2 − L2) + L4M1 − L2M2 + 2M2
1 + M2

2 + 3M1M2]
2

+[L3(L2 + L4 + M1 + M2) + L2(L4 + 2M1 + M2) + M2(2L4 + 3M1 + M2)]
2.

From H(t), we first inspect the Hamilton equations for the bath and the system coordinates. The Fourier transform
representations of the dynamical equations of the system are obtained as

−ω2Cϕ(ω) = −∂U

∂ϕ
(ω) −

(

2π

Φ0

)2

g(g · ϕ)
∑

α

c2
α

mα(ω2 − ω2
α)

. (8)

Then the noise spectrum coupling to the qubit is

J
(T )
eff (M, ω) = Jeff(M, ω)

(

Φ0

2π

)2

coth

(

h̄ω

2kBT

)

, (9)

where kB is the Boltzmann constant, T is the temperature of the thermal bath, and

Jeff(M, ω) =
ωE(M)ReZ(ω)

[D(M)ImZ(ω) + ωDZ(M)]2 + [D(M)ReZ(ω)]2
(10)

is the effective spectral density. In order to describe the
decoherence in the weak damping limit, we use the Bloch-
Redfield formalism. According to the quantum statistics
principle, the time evolution of the total density operator
ρT (t) under unitary evolution is

ih̄
dρT (t)

dt
= [H(t), ρT (t)] .

To study the dynamic process of the system, we take the
partial trace over bath modes and obtain the reduced
density operator ρ(t) = TrBρT (t).

We suppose that the initial state of the whole system is
divided into a system part ρ(0) and an equilibrium bath
part ρB = Z−1

B exp(−βHB), with the partition function

ZB = Tr exp(−βHB), β = 1/(kBT ) is the reciprocal of
the temperature. Using the Hamiltonian H(t), we can de-
duce the evolution master equation of the system density
matrix. In Born-Markov approximation, the eigenbasis
vector should be the eigenstate |n〉 of Hamiltonian HS,
with the reduced density matrix element ρnm = 〈n| ρ |m〉,
HS |n〉 = ωn |n〉, which obeys Redfield equation[14]

ρ̇nm(t) = −iωnmρnm(t) −
∑

kl

Rnmklρkl(t), (11)

ωnm = ωn − ωm. The Redfield relaxation tensors Rnmkl

comprise the dissipative effects of the coupling of the sys-
tem with the environment. The elements of the Redfield
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relaxation tensor read

Rnmkl = δlm

∑

r

Γ
(+)
nrrk + δnk

∑

r

Γ
(−)
lmnk−Γ

(+)
lmnk − Γ

(−)
lmnk.

(12)

In the above deduction, we assume that the interaction
between the system and the environment bath is linear.
For our system-bath interaction Hamiltonian (5), after
tracing out the bath degrees of freedom, we obtain

ReΓ
(+)
lmnk = (g · ϕ)lm (g · ϕ)nk

J(|ωnk|)
h̄

exp (−βh̄ωnk/2)

sinh(βh̄ |ωnk| /2)
, (13)

ImΓ
(+)
lmnk = (g · ϕ)lm (g · ϕ)nk

2

πh̄
P

×
∫

∞

0

dω
J(ω)

ω2 − ω2
nk

[

ωnk coth

(

βh̄ω

2

)

− 2

]

, (14)

where (g · ϕ)lm = 〈l|g · ϕ |m〉.
The Bloch-Redfield equation (11) can describe multi-

leveled dynamic process of the quantum system and can
be applied to an arbitrary circuit with superconducting
ring. The circuit can describe not only a single qubit,
but also several qubits. If we only consider two-level
approximation, Bloch-Redfield equation becomes Bloch
equation. So, the decoherence time T2 is given by

1

T2
=

1

2T1
+

1

Tφ

. (15)

The potential energy U(ϕ) will form an asymmetry
double-well potential under a certain condition, with the
left and right wells having a minimum value, respectively.
Under semiclassical approximation, we only consider two-
level question. When the potential barrier is very high,
there exist bind states |L〉 and |R〉, respectively. How-
ever, when the potential barrier is limited, there will exist
a potential barrier tunneling effect, with the two states
being combined.

Under semiclassical approximation, T1, T2, and the de-
phasing time of the system are given by

1

T1
=

1

h̄

(

Φ0

2π

)2 (

∆δϕ

ω01

)2

×Jeff(M, ω) coth

(

h̄ω01

2kBT

)∣

∣

∣

∣

ω=ω01

, (16)

1

Tφ

=
1

h̄

(

Φ0

2π

)2 (

εδϕ

ω01

)2

×Jeff(M, ω)

ω
coth

(

h̄ω

2kBT

)∣

∣

∣

∣

ω→0

, (17)

where ω01 =
√

∆2 + ε2, ε is the classical energy
difference and ∆ = 〈L|HS |R〉 is the tunneling ampli-
tude between the two wells, δϕ = ϕL − ϕR.

Equations (16) and (17) show that, in a certain condi-
tion, T2 and T1 are usually expressed in terms of the spec-
tral density of the heat bath fluctuations. The effective
spectral density expression of Eq. (10) is closely related
to the impedances Z(ω), showing that, for flux qubit,

the magnetic field fluctuation of the environment is an
important factor of decoherence. The spectral density
expression is also closely related to the mutual induc-
tance coupling of the circuit parameters and inductors.
These electrical circuit elements can necessarily control
and read out the state of the superconducting qubit.
They also have a large influence over the spectral den-
sity. The research result shows that for a certain circuit,
the parameters such as ε and ∆ are mainly affected
by the bias sources and external magnetic fluxes. Com-
pared with that of the bias sources and external magnetic
fluxes, the influence of the circuit element parameters
over the parameters such as ε and ∆ is very small. Now
we mainly discuss the effect of the mutual inductance
coupling on the flux qubit. We regard the parameters ε
and ∆ as constants.

Under ohmic environment, Fig. 2 describes the mutual
dependent relationship between spectral density J(ω)
and environment impedance. From Eq. (10) and Fig. 2
we can clearly see that, under the ohmic impedances en-
vironment, with other conditions constant, the spectral
density J(ω) is in reverse proportion to the environment
dissipation, showing that energy relaxation time and de-
coherence time are proportional to the dissipation, which
is consistent with the results of Refs. [15 − 18].

Under ohmic impedance environment, we get the evo-
lution curve of the spectral density J(ω) and mutual
inductance parameters. Figure 3 describes the influence
of the mutual inductance effects among inductance coils
over the spectral density. It is shown that the influence of
the mutual inductance coupling with the spectral density
is complicated. Figure 3(a) shows that, with the increase
of the mutual inductance coupling effects between L1

and L2, the spectral density increases. Supposing that
the mutual inductance coupling has no influence over the

Fig. 2. Relation between spectral density J(ω) and
impedance Z(ω). (a) With mutual inductance coupling be-
tween inductance M1 = M2 = 1 pH; (b) without mutual
inductance coupling between inductance L1 = L4 = 100 pH,
L2 = L3 = 4 pH, ω = 60 GHz.
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Fig. 3. Influence of mutual inductance effect over spectral
density J(ω). (a) The influence of M1, (b) the influence of
M2. L1 = L4 = 100 pH, L2 = L3 = 4 pH, ReZ(ω01) = 1 kΩ,
ω = 60 GHz.

tunnel, then the above result actually shows that, with
the increase of the magnetic coupling of control circuit
and main circuit, the energy relaxation time and deco-
herence time are decreasing. This is reasonable. For the
main circuit, the control circuit is the external environ-
ment. The stronger coupling effect of the system and
environment, the more clearly the decoherence.

M2 reflects the coupling effects among the inductance
in the main circuit. From Fig. 3(b), we can see that when
M2 coupling is strong, the spectral density will reduce
with the increase of the coupling. When other conditions
are constant, the decoherence time is increasing. Actu-
ally, the above result means that, for an actual quan-
tum system, the decoherence effect results from not only
the unavoidable entanglement effect between the whole
quantum system and the external environment, but also
the internal freedom degree in the quantum system. The
mutual environment among each internal subsystem in
the quantum system may also has a great influence over
the decoherence. It is also seen that the influence of
the mutual inductance effect in the same loop over the
spectral density is strongly dependent on the coupling
intensity and relative direction.

To sum up, the influence of the mutual inductance cou-
pling among the elements is complicated. Our research
results indicate that the relative orientation of mutual
inductance coupling does not affect the trend of spectral
density changing with the impedance in ohmic environ-
ment. Further analysis shows that the behavior of the
dephasing time Tφ changing with the mutual inductance
parameters and the ohmic environmental impedances is
the same as that of spectral density.

It is a useful work to study the influence of mutual
inductance factors between loops over the qubit decoher-
ence. In this letter, in the Born-Markov approximation,
according to Bloch-Redfield equation, we study the deco-
herence effect of the flux qubit. In ohmic environment,
the dephasing time Tφ rises in proportional to dissipa-
tion; the energy relaxation time T1 from the high energy
level |j〉 to the low energy level |i〉 rises directly with dis-
sipation; then the decoherence time T2 rises directly with
dissipation. The influence of mutual inductance coupling
between elements over the spectral density is relatively
complicated. Under certain conditions, we can reduce
decoherence in the system through optimizing the circuit
design and making use of the coupling effect between
induction coils. Generally speaking, weakening the mag-
netic coupling between the control loop and the main
loop helps to increase the decoherence time.

This work was supported by the National Natural Sci-
ence Foundation of China under Grant No. 10864002.
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